Estimation of nonlinear gene regulatory networks via L1 regularized NVAR from time series gene expression data.

نویسندگان

  • Kaname Kojima
  • André Fujita
  • Teppei Shimamura
  • Seiya Imoto
  • Satoru Miyano
چکیده

Recently, nonlinear vector autoregressive (NVAR) model based on Granger causality was proposed to infer nonlinear gene regulatory networks from time series gene expression data. Since NVAR requires a large number of parameters due to the basis expansion, the length of time series microarray data is insufficient for accurate parameter estimation and we need to limit the size of the gene set strongly. To address this limitation, we employ L1 regularization technique to estimate NVAR. Under L1 regularization, direct parents of each gene can be selected efficiently even when the number of parameters exceeds the number of data samples. We can thus estimate larger gene regulatory networks more accurately than those from existing methods. Through the simulation study, we verify the effectiveness of the proposed method by comparing its limitation in the number of genes to that of the existing NVAR. The proposed method is also applied to time series microarray data of Human hela cell cycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks

Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...

متن کامل

Efficient estimation of covariances and dependencies in high-dimensional gene expression data

The learning of dependencies in microarray data is challenging. Here, we will give a review of estimation methods based on Stein-type shrinkage. At their core lies a regularized estimation of the covariance matrix of the data. Subsequently, genetic networks from both, static and time-series data, can be inferred. The algorithms described exhibit a high accuracy, are computationally efficient, a...

متن کامل

Learning Gene Regulatory Networks via Globally Regularized Risk Minimization

Learning the structure of a gene regulatory network from time-series gene expression data is a significant challenge. Most approaches proposed in the literature to date attempt to predict the regulators of each target gene individually, but fail to share regulatory information between related genes. In this paper, we propose a new globally regularized risk minimization approach to address this ...

متن کامل

Reverse engineering gene regulatory networks from measurement with missing values

BACKGROUND Gene expression time series data are usually in the form of high-dimensional arrays. Unfortunately, the data may sometimes contain missing values: for either the expression values of some genes at some time points or the entire expression values of a single time point or some sets of consecutive time points. This significantly affects the performance of many algorithms for gene expre...

متن کامل

Using gene expression programming to infer gene regulatory networks from time-series data

Gene regulatory networks inference is currently a topic under heavy research in the systems biology field. In this paper, gene regulatory networks are inferred via evolutionary model based on time-series microarray data. A non-linear differential equation model is adopted. Gene expression programming (GEP) is applied to identify the structure of the model and least mean square (LMS) is used to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genome informatics. International Conference on Genome Informatics

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2008